A2 Ab initio Thermodynamics and Kinetics

Calculation of free energies, stacking fault and grain boundary energies at evaluated temperatures

Ivan Bleskov, Fritz Körmann, Tilmann Hickel
Max-Planck-Institut für Eisenforschung

Motivation

- Ab initio Thermodynamics
 - Fundamental understanding of materials properties
 - Thermodynamic modelling → A3
- Stacking fault (SF) energies calculations
 - Deformation mechanisms / exp. phenomena
 - Chemical trends, e.g. carbon → A5, A7, B1
- Grain boundaries
 - Twin boundaries → understanding from HR-TEM → C1
 - Obstacles for dislocations movement → A7, A10
- Kinetics, e.g. nanodiffusion near the SF
 - Understanding of TEM experiments→ C10

Methods

- Density functional theory (DFT)
 - Exact MT-orbitals method
 - Projected augmented waves (VASP code)
- Chemical / magnetic disorder
 - Special quasirandom structures (SQS)
 - Coherent potential approximation (CPA)
 - Disordered local moments (DLM) approximation
- Spin space averaging (SSA) method
 - (Generalized) stacking fault / twin energy
 - Explicit supercell approach
 - Axial next nearest neighbour Ising (ANNNI) model
- Kinetics / diffusion barriers
 - Nudged elastic band method

Results

- Influence of local magnetism on thermodynamic properties
- Influence of local magnetism on the GSFE surface in Fe
- Influence of nano-diffusion on the chemical trends of the SFE
- Shift of atomic layers on the twin boundary: local magnetism

Impact

- Impact for the SFB:
 - Important contribution to the multi-scale simulations of deformation mechanisms
 - Understanding of experimental results such as the behaviour of twin boundaries
- Impact for the (worldwide) scientific Community:
 - New methodology (SSA) for the atomic forces calculation at evaluated magnetic temperatures
 - The influence of local effects (chemical composition, pressure, magnetism) on the SFE