45 **Microstructure and Mechanism Maps**

Wolfgang Bleck Wenwen Song Institut für Eisenhüttenkunde der RWTH Aachen

Plan 3. Phase

Objective

- The microstructural effect will also be taken into account to predict the deformation mechanism in steels with multiphase matrix.
- The synchrotron x-ray diffraction methodology will be introduced

New methodology

• Beam time at DESY has been allocated. The first measurements have been done.

for a detailed understanding of microstructural evolution during deformation and along heat treatment cycles.

Microstructure	Deformation mechanism	Control parameters
γ	SLIP TRIP TWIP	<u>SFE</u> • Thermodynamic calculation
γ + Kappa phase	MBIP	<u>SFE + κ morphology</u> <u>+size effect</u> • Thermal equilibrium • Synchrotron methodology • Atom probe tomography
γ + α'	SLIP (a') SLIP TRIP TWIP	 SFE_γ + elemental partitioning +size effect Thermal equilibrium Phase field modelling Atom probe tomography

• Deformation mechanism (SLIP/TRIP/TWIP + MBIP) = f (chem., T, pre-treatment (T, t)) • Deformation mechanism + microstructure = f (chem., T, pre-treatment (ϵ , T, t))

Overview of the material design by the upgraded deformation mechanism maps

High resolution synchrotron X-ray powder diffraction for the characterization of polycrystal materials.

Input

<u>A1</u> Gibbs free energy state for a quaternary (FeMnAIC) system

Example in WP1: What is the formation mechanism of kappa phase and how does it influence the strain hardening behavior of MBIP steels?

σ 450

Output A7/A10/B1/B2/B4/B6 SFE and mechanism maps <u>A8</u> Phase field simulation <u>C6</u> Multiaxial/cyclic properties of HMnS <u>C8</u> Diffraction data for coherence stress assessment **C10** Tensile properties (under high strain rate) of MMnS

<u>A2</u> CalPhaD stacking fault energy

<u>A3</u>

Thermodynamic data for kappa phase equilibrium

<u>C1</u> EBSD, HRTEM

<u>C3</u> Combinatoric alloy design in Fe-Mn-Al-C system

□ The long-range ordered kappa phase already starts precipitating from the austenitic matrix as early as 15 min during aging at 600 °C in Fe-30Mn-8AI-1.2C steel.

Up to 9 hours aging, the lattice misfit between the kappa phase and the austenite matrix still maintains being very small (less than 2 %) which may lead to an effective coherent precipitation hardening.

□ The Fe-30Mn-8Al-1.2C alloy exhibits an improved combination of strength and ductility, with respect to conventional HSLA, DP and TRIP steels.

	Δσ _y	ΔΑ
HSLA	200 MPa	-50%
MBIP ?	200 MPa	-5%

Goal/Impact

- □ Simulation of microstructure evolution using phase field models
- □ Validation of mechanism maps in the design of multiphase steels (MMnS)

- WP1: Synchrotron X-ray diffraction of kappa phase precipitation.
- WP2: Experimental validation of modeling results by atom probe tomography, EBSD and metallography.
- WP3: Phase field modeling of microstructure evolution during phase transformations in MMnS steels.
- WP4: Integration of the microstructural and partitioning features into Microstructure- and mechanism maps.

