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* The microstructural effect will also be taken into account to predict
the deformation mechanism in steels with multiphase matrix.

* The synchrotron x-ray diffraction methodology will be introduced
for a detailed understanding of microstructural evolution during
deformation and along heat treatment cycles.
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Overview of the material design by the upgraded deformation mechanism maps

|npu’[ Example in WP1: What is the formation mechanism of kappa phase and how does it Ou’[pu’[
influence the strain hardening behavior of MBIP steels?
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Goal/lmpact
Work package
1 Extension of mechanism maps (precipitation, microstructure evolution,

K-phase)  WP1: Synchrotron X-ray diffraction of kappa phase precipitation.

d Simulation of microstructure evolution using phase field models « WP2: Experimental validation of modeling results by atom probe

L _ _ _ _ tomography, EBSD and metallography.
 Validation of mechanism maps in the design of multiphase steels _ _ _ _ _
(MMnS) « WP3: Phase field modeling of microstructure evolution during

phase transformations in MMnS steels.

 WP4: Integration of the microstructural and partitioning features
into Microstructure- and mechanism maps.




